# CHROMOSOME COUNTS OF COMPOSITAE FROM THE UNITED STATES, MEXICO, AND GUATEMALA ${ }^{1}$ 

David J. Keil and Tod F. Stuessy

Chromosome numbers can be extremely useful in systematic studies, particularly for helping to reveal evolutionary relationships. For the past fifteen years numerous chromosome reports from plants have been published, especially in the Compositae, and these counts have been compiled in several major sources (Darlington \& Wylie, 1955; Cave, 1958-65; Ornduff, 1967-69; Fedorov, 1969 ; Moore, 1970-72). However, a rapid glance through these references indicates not only that many species never have been counted, but also that many taxa are known only from a single plant in one population. In view of the common occurrence of euploid and aneuploid races in plants as illustrated by several detailed investigations (e.g., Lewis, 1962, 1970; Stuessy, 1971a), it is desirable to have several to many counts from each species before accurate judgments can be made regarding evolutionary relationships (Stuessy, 1971b; Kovanda, 1972; Strother, 1972). The present paper helps to remedy these deficiencies in the Compositae by: (1) reporting first chromosome counts for several genera, species, and varieties; and (2) reporting additional populational chromosome counts for taxa documented previously.

## MATERIALS AND PROCEDURES

The meiotic chromosomal material for this study was collected during the past several years by the senior and junior authors on various field excursions. Immature capitula were killed and fixed in modified Carnoy's fluid (4 chloroform: 3 absolute alcohol: 1 glacial acetic acid) and refrigerated in the laboratory until later prepared by con-

[^0]ventional acetocarmine squash techniques. Voucher specimens collected by Keil and assistants are on deposit in the herbarium of The Ohio State University (OS) ; vouchers collected by Stuessy are in the herbarium of the University of Texas at Austin (TEX).

## RESULTS

The chromosome counts obtained in the present study are listed in Table 1. First counts are reported for two genera, 16 additional species, and one variety; 112 additional counts are for taxa counted previously, seven of which are new numbers. The first counts for genera are from Epaltes Cass. $(n=10)$ and Tricarpha Longpre ( $n=8$ ), and first counts for species are in Bidens L., Calea L., Guardiola Cerv. ex H. \& B., Machaeranthera Nees, Melampodium L., Otopappus Benth., Sclerocarpus Jacq., Senecio L., Sigesbeckia L., Simsia Pers., Spilanthes Jacq., Tridax L., and Zaluzania Pers.

## DISCUSSION

Because many of the counts presented here corroborate previous chromosomal reports, the discussions are restricted either to first counts or to new reports for genera, species, or varieties. The order of commentary will follow the sequence of tribes in the classification of Hoffmann (1890-94), which is the same as that used in Table 1. References for statements regarding the range of chromosomal variation within genera will not be given; documentation for these counts comes from the several major sources cited in the introduction to this paper.
eupatorieae. Counts for three herbaceous species of Stevia Cav. represent new reports. Stevia elatior H.B.K. is cited here as $n=12_{\text {II }} \& 12_{\mathrm{I}}$ (Fig. 1), whereas the two previously recorded numbers have been $n=34$ I (Powell \& Turner, 1963) and $n=33_{\mathrm{I}}$ (Grashoff, Bierner, \& Northington, 1972). Our count for Stevia origanoides H.B.K.,
reported here as $n=11$ (Fig. 2), is the first for this taxon at what appears to be the diploid level; the previous counts were $n=34_{\text {I }}$ and $n=$ ca. $43 \pm 1_{\text {I }}$ (Grashoff et al., 1972). Stevia plummerae A. Gray var. durangensis Robins. has been reported before only once by Grashoff et al. (1972) as $n=$ ca. 17, but our count is $n=44_{\text {I }}$ (Fig. 3). As pointed out by Grashoff et al. (1972), it is common to find varying meiotic chromosomal associations and numbers in species that have apomictic races, as are present in these three taxa. It is not surprising, therefore, that our reported counts add to this chromosomal diversity.
aStereae. Several previous counts have been reported for Erigeron karwinskianus DC. : $2 n=32$ (Carano, 1924; Battaglia, 1950) ; $2 n=36$ (Fagerlind, 1947; Larsen, 1953, 1954; Kliphuis \& Wieffering, 1972) ; $n=9$ and $n=27_{\text {I }}$ (Turner, Ellison, \& King, 1961) ; and $n=$ ca. 27 (Turner, Powell, \& King, 1962). Considering the variation in chromosome number that has been documented previously in this species, as well as our new report of $n=5_{\text {II }} \&$ 17 $_{\text {I }}$ (Fig. 4), it is likely that $E$. karwinskianus is apomictic through at least part of its range from Mexico to northern South America (Solbrig, 1962). It is interesting that our count comes from a population very near the locality cited by Turner et al. (1961) for their counts of $n=9$ and $n=27 \mathrm{I}$.

Machaeranthera coulteri (A. Gray) Turner \& Horne (as Psilactis coulteri A. Gray) was reported as $n=5$ by Solbrig, Anderson, Kyhos, Raven, and Rüdenberg (1964). However, based on the recent revision of sect. Psilactis of Machaeranthera by Turner and Horne (1964), the geographic location of the voucher for the count seems more appropriate for $M$. arida Turner \& Horne than for $M$. coulteri. The latter species, as recently interpreted, is known only from the vicinity of Guaymas, Sonora, where our voucher was collected. Our first count of $n=5$ (Fig. 5) for Machaeranthera coulteri is particularly interesting because in the previously mentioned revision of sect. Psilactis of the genus (Turner \& Horne, 1964; cf. their


Figs. 1-22. Camera lucida drawings of meiotic chromosomes of species of Compositae. Diplotene, Fig. 18; diakinesis, Figs. 5, 7-10, 12, 15, 19-21; metaphase I, Figs. 1, 3, 4, 6, 11, 14, 16, 17; metaphase II, Figs. 2 (one half of cell shown), 13. All figures same scale. Bivalents black, univalents white. $\mathrm{KC}=$ Keil \& Canne, $\mathrm{KM}=$ Keil $\&$ McGill, $K=$ Keil. Fig. 1, Stevia elatior, $K 9396, n=12_{\mathrm{II}} \& 12_{\mathrm{I}}$; Fig. 2, Stevia origanoides, $K C$ 8884, $n=11$; Fig. 3, Stevia plummerae var. durangensis, KC 8927-1, $n=44_{1}$; Fig. 4, Erigeron karwinskianus, KC 9178, $n=5_{11} \& 17_{\mathrm{I}}$; Fig. 5, Machaeranthera coulteri, KC 8637, $n=5$; Fig. 6, Epaltes mexicana, $K C$ 9211, $n=10$; Fig. 7, Bidens

riparia var. refracta, $K C 8710, n=12$; Fig. 8, Guardiola platyphylla. $K M 8558, n=12$; Fig. 9, Melampodium appendiculatum, KC 8706A, $n=10$; Fig. 10, Otopappus imbricatus, $K C$ 9112, $n=16$; Fig. 11, Parthenium incanum, $K M 7765$ A, $n=18_{\text {II }} \& 18_{\mathrm{I}}$; Fig. 12, Sclerocarpus spatulatus, $K C$ 8671A, $n=11$; Fig. 13, Sigesbeckia jorullensis, KC 8902, $n=30$; Fig. 14, Simsia eurylepis, KC 9231, $n=17$; Fig. 15, Simsia grayi, KC 9081, $n=17$; Fig. 16, Spilanthes phaneractis, $K C$ 9035, $n=41$; Fig. 17, Tricarpha durangensis, $K C$ 8860A, $n=8$; Fig. 18, Tridax tenuifolia var. microcephala, $K C 8808, n=9$; Fig. 19, Zaluzania grayana, $K M$ 8379A, $n=17$; Fig. 20, Schkuhria pinnata var. guatemalensis, $K$ 9402A, $n=10$; Fig. 21, Senecio runcinatus, KC 9192, $n=22$; Fig. 22, Pinaropappus roseus, $K C$ 9177, $n=20_{\text {II }} \& 1_{\mathrm{I}}$.

Fig. 3), M. coulteri on morphological grounds was placed in the $x=5$ cytophyletic group along with $M$. arida and M. crispa (Brandg.) Turner \& Horne, both known chromosomally as $n=5$. More recently M. arizonica Jackson \& R. R. Johnson and M. parviflora A. Gray have been added to this group and both species have been counted as $n=5$ (Jackson \& Johnson, 1967). This first chromosomal report for $M$. coulteri substantiates its phyletic association with these other species. All other taxa in sect. Psilactis are known chromosomally as either $n=4$ or $n=9$ (Turner \& Horne, 1964).
inuleae. The first report for Epaltes (E. mexicana), $n=10$ (Fig. 6), is in keeping with its present subtribal disposition in the Plucheinae. Of the related genera of the same subtribe (Hoffmann, 1890-94) that are known chromosomally (Blumea DC., Pluchea Cass., Pterigeron (DC.) Benth., Pterocaulon Ell., Sphaeranthus L., and Tessaria Ruiz \& Pav.), all are based on $x=10$ except Blumea which appears multibasic with $x=9,10$, and 11. On morphological and geographical grounds, in our opinion, Epaltes mexicana Less. is quite similar to some species of Pluchea, the former differing mainly in its smaller heads and flowers and in its epappose achenes. As emphasized by Bentham (1873) and Godfrey (1952), the generic boundaries in the Plucheinae are not well defined and perhaps should be reevaluated.
heliantheae. Bidens riparia is reported for the first time as $n=12$ (Fig. 7) in a genus that has most frequently counted numbers of $n=12,24$, and 36 (clearly based on $x=12$ ).

The first count for Calea zacatechichi Schlecht., $n=$ ca. 19 , is in keeping with previous reports for other species of the genus ( $n=9,16,18,19,24,32$ ). According to the most recent revision of the Mexican and Central American taxa (Robinson \& Greenman, 1896), C. zacatechichi is most closely related to C. nelsonii Robins. \& Greenm. which has been counted as $n=$ ca. 18 (Turner et al., 1962). The
morphological and chromosomal heterogeneity within Calea and the absence of a recent revision of the entire genus suggest that a thorough modern study is much needed.

Guardiola, a genus of about ten species, has been placed traditionally in the subtribe Melampodiinae (Hoffmann, 1890-94). However, recent studies by the junior author suggest that on morphological and cytological evidence it belongs more properly in the Coreopsidinae (Stuessy, 1973). Our first count of $n=12$ (Fig. 8) for $G$. platyphylla A. Gray is consistent with the recent reports of $n=12$ for both G. tulocarpus A. Gray (Grashoff et al., 1972) and G. mexicana H. \& B. (Solbrig, Kyhos, Powell, \& Raven, 1972), ${ }^{2}$ and with the base number of $x=12$ for several other members of this subtribe. ${ }^{3}$

The count of $n=10$ (Fig. 9) is a first report for Melampodium appendiculatum Robins. In a recent revision of the genus (Stuessy, 1972) this species is placed in series Cupulata of sect. Melampodium; three other related species (M. cupulatum A. Gray, M. rosei Robins., and M. tenellum Hook. \& Arn.) also are known chromosomally as $n=10$ (Stuessy, 1971b). The addition of this new count increases the number of species surveyed within the genus to 27 out of 37 .

The first generic report for Otopappus ( $O$. scaber S. F. Blake) has been published recently by Solbrig et al. (1972) as $n=16$. Our first report for $O$. imbricatus (Sch.-Bip.) S. F. Blake of $n=16$ (Fig. 10) confirms this chromosomal level for the genus. The related genera Salmea DC. and Notoptera Urb. (Blake, 1915) are known respectively as $n=18+2$ frag. (Turner et al., 1962) and $n=$ ca. $15 \& 16$ (Turner et al., 1962; Turner \& King, 1964), although very few taxa have been examined from each.

[^1]Parthenium L., and particularly P. argentatum A. Gray, has been studied extensively for many years (cf. Hammond \& Polhamus, 1965), including a comprehensive revision by Rollins (1950). Parthenium incanum H.B.K. has been reported previously as having a polyploid series of $n=18$, 27,36 , and 45 , but our new count is $n=18_{\text {II }} \& 1_{\text {I }}$ (Fig. 11). This interploid number could represent the product of hybridization between $P$. incanum and other species of the genus that grow in the vicinity, such as $P$. argentatum, but our voucher specimens show no morphological indication of such intergradation. Alternatively, the meiotic configuration could indicate a hybrid between $n=18$ and $n=36$ cytotypes of the same species. The plants under consideration also could be apomictic, a condition that is known to occur in populations in the northern range of $P$. incanum (Rollins, 1950) where our material was collected.

The count of $n=11$ (Fig. 12) for Sclerocarpus spatulatus Rose is consistent with previously reported numbers of $n=11,12,14$, and 18 in the genus as recently defined by Feddema (1971). The closely related genus, Aldama LaLlave \& Lex., is known chromosomally as $n=17$ (Turner et al., 1962; Powell \& Cuatrecasas, 1970; Feddema, 1971).

Sigesbeckia L. of the subtribe Helianthinae is a small genus of less than ten species. It is worthwhile to mention that a close morphological resemblance exists with Trigonospermum Less. (McVaugh \& Anderson, 1972; Stuessy, 1973) and perhaps also with Rumfordia DC., the former of the subtribe Melampodiinae and the latter of the Helianthinae. Our count of $n=15$ is a first report for S. agrestis Poepp. \& Endl. All but two other reports in the genus [ $n=12$ (Subramanyam \& Kamble, 1967) and $2 n=20$ (Hsu, 1967) for $S$. orientalis L.] have been either $n=15$ or $n=30$. Infraspecific euploidy is known to occur in $S$. orientalis (Mehra, Gill, Mehta, \& Sidhu, 1965) and it is now documented for $S$. jorullensis H.B.K. by our counts of $n=15$ and 30 (Fig. 13). Only one count of $n=15$ (Solbrig et al., 1972) has been recorded previously for this species.

Of the approximately 35 species of Simsia recognized by various authors (Blake, 1913, 1917, 1928; Cuatrecasas, 1954; Robinson \& Brettell, 1972), ten have been counted from morphologically diverse parts of the genus, and all counts have been $n=17$. Our first counts of $n=17$ (Figs. 14 \& 15) for S. eurylepis S. F. Blake and S. grayi Sch.-Bip. ex S. F. Blake emphasize the chromosomal uniformity within the genus.

Spilanthes with approximately 60 species (Moore, 1907) is a taxonomically complex genus much in need of revisionary attention. It appears to belong in the subtribe Galinsoginae rather than in the Helianthinae as traditionally placed (Hoffmann, 1890-94). Chromosomally the situation also is complex. Even though only six species have been counted, four base numbers, $x=7,12,13$, and 16 , are present. Our first report of $n=$ ca. 45 for $S$. ocymifolia (Lam.) A. H. Moore adds another chromosomal level to the already chromosomally diverse sect. "Salivaria" (= sect. Spilanthes) known with $n=7,12,16$, and 26. All previous reports for sect. Acmella (Rich.) DC. have been clearly based on $x=13$ (only $n=13$ and $n=26$ counts reported). Our new report of $n=41$ (Fig. 16) for $S$. phaneractis (Greenm.) A. H. Moore increases the chromosomal diversity of this section as well.

Tricarpha is a genus of two species recently described by Longpre (1970). Our first count for the genus (from $T$. durangensis Longpre) of $n=8$ (Fig. 17) substantiates its presumptive close relationship to Sabazia Cass. ( $n=4,8$, and 16) and Selloa Kunth $(n=8)$ as mentioned by Longpre (1970). The problem of generic delimitation in the subtribe Galinsoginae, involving Tricarpha, Sabazia and Selloa as well as Galinsoga Ruiz \& Pavon, Stenocarpha S. F. Blake, Tridax and Jaegeria Kunth, is much in need of further study, despite the appearance in recent years of several excellent revisions (Powell, 1965; Turner, 1965; Torres, 1968; Longpre, 1970). Part of the difficulty in sorting out the proper affinities of all the taxa in the Galinsoginae is that previous workers have been working from the
perspective primarily of a single genus and not from a perspicacious overview of many of the genera within the subtribe. An added difficulty is the absence of a recent revision of Galinsoga (most recent treatment that of Robinson, 1894), the understanding of which clearly is central to sorting out these generic relationships.

Our first report for Tridax tenuifolia Rose, $n=9$ (Fig. 18), fits well with the established base number of $x=9$ for sect. Tridax to which T. tenuifolia belongs (Powell, 1965).

Of the 14 species of Zaluzania recognized by Sharp (1935), six have been counted with definite numbers of $n=16$ and 18. Our first report, $n=17$ (Fig. 19), for Z. grayana Robins. \& Greenm. firmly establishes this as a new chromosomal level for the genus (a previous count of $n=17 \pm 1$ for $Z$. montagnaefolia Sch.-Bip. was reported by Powell and Turner, 1963).
helenieae. Schkuhria pinnata (Lam.) Cabrera has been counted before as $2 n=20$ (Covas and Schnack, 1946), and var. virgata (LaLlave) Heiser of the same species has been reported as $n=$ ca. 20 (Turner et al., 1962). Recently McVaugh (1972) transferred S. anthemoidea (DC.) Coult. var. guatemalensis (Rydb.) Heiser to S. pinnata, and our counts of $n=10$ (Fig. 20) for this taxon are the first reports. A count of $n=11$ (Table 1) was obtained from material tentatively identified as $S$. anthemoidea. However, our voucher specimen differs from the characters of this species as delimited by Heiser (1945) in having more numerous disc florets and large ray florets, as in S. schkuhrioides (Link \& Otto) Thellung in Fedde. In pappus structure, though, our plants are much more similar to $S$. anthemoidea than to $S$. schkuhrioides. This collection may represent a previously undescribed taxon.
senecioneae. Our first reports of $n=\mathrm{ca} .30$ for Senecio hartwegii Benth. and $n=22$ (Fig. 21) for $S$. runcinatus Less. are consistent with counts reported previously for other taxa of the genus. Thirty-three species of Senecio
have been reported as $n=30$ and six are known with $n=$ 22. Although the genus is based either on $x=5$ (Barkley, 1962) or $x=10$ (Ornduff, Raven, Kyhos, \& Kruckeberg, 1963 ; Ornduff, Mosquin, Kyhos, \& Raven, 1967), the diversity of haploid numbers is great, representing 30 different chromosomal levels from $n=5$ to $n=$ ca. 92 .
cichorieae. The small genus Pinaropappus Less. has been counted from only one species, P. roseus Less., and the reported counts are $n=9$ and 18 (Darlington \& Wylie, 1955; Turner et al., 1961; Powell \& Turner, 1963; Powell $\&$ Sikes, 1970). Our present count of $n=20_{\text {II }} \& 1_{\text {I }}$ (Fig. 22 ) is a new report for this taxon. The meiotic configurations of cells in our preparation were irregular with bridges, lagging chromosomes, and varying numbers of univalents.

## ACKNOWLEDGMENTS

Field work for this investigation was completed largely with support from NSF grant GB-30240; publication costs were defrayed partially by funds from NSF grant GB37678. Thanks are extended to Judith M. Canne and Lyle A. McGill for assistance on collecting trips.
Table 1. Chromosome counts of Compositae from the United States, Mexico, and Guatemala.

| Taxon | Locality and voucher |
| :---: | :---: |



Aster spinosus Benth.
Baccharis glutinosa Pers.
Conyza sophiaefolia H.B.K.
Erigeron divergens
Torr. \& A. Gray
$\dagger$ Erigeron karwinskia
**Machaeranthera coulteri (A. Gray) Turner \& Horne Machaeranthera pinnatifida
(Hook.) Shinners Machaeranthera scabrella
(Greene) Shinners
Xanthocephalum sericocarpum
A. Gray

[^2]HELIANTHEAE
Ambrosia artemisiifolia L .
Ambrosia psilostachya DC.
Ambrosia psilostachya DC.
Ambrosia psilostachya DC. port, KC 9008.

NE of Freeport, Turner 5747 (ca. 54); Galveston co.: 60 S . Theresa, Galveston, Miller s.n.

GUATEMALA: Santa Rosa: 3.5 km . NW. of Culi-
MEXICO: Guerrero: 10 mi . S. of Chilpancingo, $K C$ 9126.

MEXICO: Distrito Federal: 17.7 mi . W. of D.F.-
Puebla boundary on Rte. 190 -D, KC 9164 .
MEXICO: Distrito Federal: 17.7 mi . W. of D.F.
Puebla boundary on Rte. $190-\mathrm{D}, \mathrm{KC} 9164$.
MEXICO: Chihuahua: 15.5 mi . W. of Santa Lucia,
KM 8304.
MEXICO: Sonora: 5.5 mi . E. of Arroyo Cuchujaqui on Álamos-Milpillas rd., KC 8710. GUATEMALA: Guatemala: 6.8 km . NE. of Amatitla, $K 9430$.
MEXICO: Jalis

MEXICO: Jalisco: 1.2 mi . NW. of Magdalena air-
UNITED STATES: Illinois: LAKE CO.: Lake Forest College campus, $S 1132$.

MEXICO: Tamaulipas: ca. 2 mi . SE. of Reynosa, S 774 (ca. 18). UNITED STATES: Texas: KINMEXICO: Chihuahua: 7 mi . NW. of Cuauhtémoc,

S 1062a.
UNITED STATES: Texas: bRazoria co.: 12 mi . NE. of Freeport, Turner 5747 (ca. 54); Galveston apa, K 9403.

12 (Fig. 7)



Chrysanthellum mexicanum
Greenm.
Cosmos linearifolius (Sch.-Bip.)
Hemsl. var. linearifolius
Cosmos parviforus (Jacq.) Pers.
Dicranocarpus parviflorus A. Gray
Eclipta alba (L.) Hassk.
Flaveria trinervia (Spreng.)
C. Mohr.
Guardiola mexicana H. \& B.
** Guardiola platyphylla A. Gray
Helianthus laciniatus A. Gray
Heterosperma pinnatum Cav.
Jaegeria hirta (Lag.) Less.
Jaegeria macrocephala Less.
**Melampodium appendiculatum
Robins.
Melampodium cupulatum A. Gray
MEXICO: Michoacán: 26 mi . S. of Pátzcuaro, $S$
686. Veracruz: $8 \mathrm{mi} . \mathrm{N}$. of Jalapa, $S$ 491, 492. MEXICO: Sonora: 0.3 mi . N. of Arroyo Cuchujaqui on Álamos-Guirocoba rd., $K C 8672 \mathrm{~A}$; 4.7 mi .
E. of Arroyo Cuchujaqui on Alamos-Milpillas rd.,
MEXICO: Sinaloa: 27.3 mi . S. of Sinaloa-Sonora
 MEXICO: Sinaloa.
MEXICO: Jalisco: Ocotlán, KC 9034.
GUATEMALA: Suchitepequez: 4.5 km . E. of pu-
MEXICO: Nayarit: ca. 18 mi . SE. of Tepic, $K C$ 8960-1. Sinaloa: 0.4 mi . SW. of Santa Lucia, $K C$ 8835. Sonora: 4.7 mi . E. of Arroyo Cuchujaqui
MEXICO: Guerrero: 2.6 mi . S. of Taxco, KC 9112.
UNITED STATES: Texas: PRESIDIO co.: $10 \mathrm{mi} . \mathrm{S}$.
of Shafter, $K M$ 7764.
UNITED STATES: Texas: PRESIDIo co.: $10 \mathrm{mi} . \mathrm{S}$.
MEXICO: Chiapas: 11 mi . N. of Arriaga, S 630.
MEXICO: México: 1.1 mi . N. of Ixtapán de la Sal,
KC 9093A.

## 18 <br> 10 (Fig. 9)


16 (Fig. 10)
36
$18_{\text {II }} \& 18_{\text {I }}$ (Fig. 11)
$\stackrel{\infty}{\sim} \infty$
11 (Fig. 12)
14
15
15
30 (Fig. 13)
17 (Fig. 14)
17 (Fig. 15)
ca. 24
ca. 45
41 (Fig. 16)
17
11
8 (Fig. 17)
9

| *Sclerocarpus spatulatus Rose | MEXICO: Sonora: 2.4 mi . S. of Álamos, KC 8671A. |
| :---: | :---: |
| Sclerocarpus sessilifolius Greenm. | MEXICO: Nayarit: ca. 18 mi . SE. of Tepic, $K C$ 8963-1. |
| **Sigesbeckia agrestis Poepp. \& Endl. | GUATEMALA: Alta Verapaz: 4 mi . NE. of San Pedro Carchá, S 595. |
| Sigesbechia jorullensis H.B.K. | MEXICO: México: 2 mi . E. of Cuajimalpa, $S$ 672, 673. |
| $\dagger$ Sigesbeckia jorullensis H.B.K. | MEXICO: Durango: 9.7 mi . SW. of La Ciudad, KC 8902. |
| **Simsia eurylepis S. F. Blake | MEXICO: Veracruz: 10.8 mi . SW. of Panuco, $K C$ 9231. |
| **Simsia grayi Sch.-Bip. ex S. F. Blake | MEXICO: Michoacán: 1.8 mi . S. of Tuxpan, $K C$ |
| Spilanthes americana (Mut.) <br> Hieron. var. parvula (Robins.) <br> A. H. Moore | MEXICO: Veracruz: 5 mi . N. of Jalapa, $K C 9188$. |
| **Spilanthes ocymifolia (Lam.) <br> A. H. Moore | GUATEMALA: Guatemala: 6.8 km . NE. of Amatitla, $K$ 9429A. |
| **Spilanthes phaneractis (Greenm.) <br> A. H. Moore | MEXICO: Jalisco: Ocotlán, KC 9035. |
| Tithonia calva Sch.-Bip. | MEXICO: Sinaloa: 6.8 mi . NE. of Santa Lucia, KC 8845. |
| Tragoceros americanus (Mill.) <br> S. F. Blake | MEXICO: Jalisco: 2 mi . NW. of Tequila, S 739. |
| Tricarpha durangensis Longpre | MEXICO: Sinaloa: 21.9 mi . NE. of Santa Lucia, KC 8860A. |
| Tridax coronopifolia (Kunth) Hemsl. | MEXICO: Michoacán: 2.8 mi . S. of La Barca, $K C$ 9039A. |

9
18
9 (Fig. 18)
ca. 34
17 (Fig. 19)
11

| N゙ |
| :---: |

MEXICO: Jalisco: 6.1 mi . E. of Jalisco-Nayarit
brundary on Rte. $15, K C$. 8992 .
MEXICO: Sinaloa: 44 mi SE. of Culiacán, $K C$
8804.
MEXICO: Sinaloa: ca. 40 mi . NW. of Mazatlán,
KC 8808.
MEXICO: Coahuila: $5 \mathrm{mi} . \mathrm{W}$. of Saltillo, $S 927$.
MEXICO: Chihuahua: 36 mi . E. of Cd. Guerrero,
KM 8379A.
MEXICO: Nayarit: ca. 18 mi . SE. of Tepic, $K C$
8966.

Tridax mexicana A. M. Powell
Tridax mexicana A. M.
Tridax procumbens L.g
**Tridax tenuifolia Rose
var. microcephala Rose Viquiera stenoloba S. F. Blake **Zaluzania grayana

Robins. \& Greenm.
Zinnia angustifolia H.B.K.

MEXICO: Coahuila: 0.2 mi . E. of El Numbre, KM 7963 (ca. 24); 8.9 mi . N. of Rancho Acatita,

MEXICO: Chihuahua: 29.9 mi . S. of Cd. Jiménez, KM 8221A. UNITED STATES: Texas: culber-
son co.: 3.7 mi . W. of Van Horn, KM 7688.
 UNITED STATES: Texas: brewster co.: Big Bend Natl. Pk., 8.7 mi . N. of headqtrs., $K M$ 7821A.

MEXICO: Puebla: 8 mi . E. of Puebla, $K C 9172$.
MEXICO: Coahuila: 2.1 mi . N. of Rancho Acatita, KM 8066.
yssodia aurea (A. Gray) Nels.
var. polychaeta (A. Gray)
M. C. Johnst. Dyssodia papposa (Vent.) Hitchc. Dyssodia pentachaeta (DC.) Robins. subsp. pentachaeta var.
belenidium (DC.) Strother belenidium (DC.) Strother
HELENIEAE Bahia absinthifolia Benth. var. dealbata (A. Gray) A. Gray Bahia pedata A. Gray
Florestina tripteris DC.
MEXICO: Coahuila: 63 mi . S. of Piedras Negras,
KM 7847A. Durango: 16 mi . S. of Nazareno,
UNITED STATES: New Mexico: grant co.: 0.3
mi. S. of jctn. Rtes. US $180 \& N M$ 61, $K M$ 8460A.
UNited STATES: New Mexico: hidalgo co.: 14
MEXICO: Chihuahua: 2 mi . S. of Cuauhtémoc, $S$ 1051.
GUATEMALA: Jutiapa: 7.3 mi . W. of jetn. Rtes.
United states: New Mexico: hidalgo co.: 14 MEXICO: Coahuila: La Rosa, KM 7922.
MEXICO: Veracruz: 4 mi . NE. of Nautla, $K C$
MEXICO: Chihuahua: 43 mi . N. of Villa Ahu-
MEXICO: Coahuila: 0.8 mi . W. of San Raphael, Casas Grandes, S 1109.
10
气
$\stackrel{N}{-}$
17
の

Gaillardia pinnatifida Torr. var. $K M$ 7847A. Durango: 16 mi . S. of Nazareno,
$K M$ 8030A. UNITED STATES: New Mexico: Hidalgo Co.: 14
mi. NE. of Lordsburg, KM 8491A. 3 \& CA-1, K 9410. MEXICO: Nayarit: ca. 8 mi .
SE. of Tepic, KC 8954-1.
MEXICO: Chihuahua: $28 \mathrm{mi} . \mathrm{W}$. of jctn. Rtes. 45
12
11
12 $\stackrel{\sim}{7}$
Gaillardia pulchella Foug.
-.toL ppy?
Hymenoxys richardsonii (Hook.)
Cockerell var. floribunda
(A. Gray) K. F. Parker Nicolletia edwardsii A. Gray Palafoxia rosea (Bush) Cory var. robusta (Rydb.) Cory Palafoxia sphacelata (Nutt.
Palafoxia texana DC. var. texana
Pectis papposa Harv. \& A. Gray var. grandis Keil
Porophyllum coloratum
12
11
11
10 (Fig. 20)
12
11
12
12
18
30
8

| orophyllum punctatum (Mill.) S. F. Blake | MEXICO: Veracruz: 4 mi. NE. of Nautla, $K$ 9203. |
| :---: | :---: |
| Porophyllum ruderale (Jacq.) | UNITED STATES: Arizona: Santa cruz co |
| Cass. subsp. macrocephalum <br> (DC.) R. R. Johnson | Peña Blanca Lake, $K C 8585$. |
| Schkuhria cf. anthemoidea (DC.) Coult. | MEXICO: Jalisco: 2.1 mi . NW. of Magdalena airport, KC 8998. |
| *Schkuhria pinnata (Lam.) Cabrera var. guatemalensis (Rydb.) McVaugh | GUATEMALA: Santa Rosa: 3.5 km . NW. of Culiapa, $K$ 9402A. MEXICO: Nayarit: ca. 8 mi . SE. of Tepic, KC 8956-1. |
| Tagetes filifolia Lag. | MEXICO: Sinaloa: 3.8 mi . SW. of Santa Lucia, $K C$ 8834A. |
| Tagetes lucida Cav. | MEXICO: Nayarit: ca. 18 mi . SE. of Tepic, $K C$ 8968-1. |
| Tagetes micrantha Cav. | MEXICO: Chihuahua: $2 \mathrm{mi} . \mathrm{S}$. of Cd. Guerrero, KM 8320A. |
| Tagetes subulata Cerv. | MEXICO: México: 1 mi . N. of Guerrero-México boundary on Rte. 55, KC 9101. |
| ANTHEMIDEAE |  |
| Artemisia ludoviciana Nutt. subsp. mexicana (Willd.) Keck | MEXICO: Durango: 14 mi . SW. of La Ciudad, KC 8941. |
| SENECIONEAE |  |
| Odontotrichum sinuatum (Cerv.) Rydb. | MEXICO: Jalisco: 1.2 mi . NW. of Magdalena airport, KC 9011. |
| Schistocarpha oppositifolia (Kuntze) Rydb.h | MEXICO: Veracruz: 11.8 mi . W. of Tuxpán, $K C$ 9222. |

**Senecio hartwegii Benth.
**Senecio runcinatus Less.
Trixis californica Kellogg
CICHORIEAE
$\dagger$ Pinaropappus roseus Less.
MEXICO: Veracruz: 11.1 mi . E. of Puebla-Vera- $20_{\mathrm{II}} \& 1_{\mathrm{I}}$ (Fig. 22)
cruz boundary on Rte. $150-\mathrm{D}, \mathrm{KC} 9177$.
ca. 30
22 (Fig. 21)

[^3]
## LITERATURE CITED

Barkley, T. M. 1962. A revision of Senecio aureus Linn. and allied species. Trans. Kansas Acad. Sci. 65: 318-408.
Battaglia, E. 1950. L'alterazione della meiosi nella riproduzione apomittica di Erigeron Karwinskianus DC. var. mucronatus DC. (Asteraceae). Caryologia 2: 165-204.
Bentham, G. 1873. Notes on the classification, history, and geographical distribution of Compositae. Jour. Linn. Soc., Bot. 13: 335-577.
Blake, S. F. 1913. A revision of Encelia and some related genera. Proc. Am. Acad. Arts 49: 346-396.
1915. A revision of Salmea and some allied genera. Jour. Bot. 53: 193-235.
1917. New and noteworthy Compositae, chiefly Mexican. Contr. Gray Herb. 52: 16-59. (cf. pp. 43-47.)
1928. Twelve new American Asteraceae. Jour. Wash. Acad. Sci. 18: 25-37.
Carano, E. 1924. Osservazioni sul meccanismo di divisione della cellula madre del sacco embrionale nelle piante apogame. Atti Reale Accad. Lincei, Rediconti Cl. Sci. Fis., ser. 5, 33: 150-155.
Cave, M. [ed.]. 1958-65. Index to Plant Chromosome Numbers, 1956-64 \& Suppl. Univ. North Carolina Press, Chapel Hill.
Covas, G., \& B. Schnack. 1946. Número de cromosomas en Antófitas de la región de Cuyo (República Argentina). Rev. Argent. Agron. 13: 153-166.
Cuatrecasas, J. 1954. Notas a la flora de Colombia, XIII. Revista Acad. Colomb. Ci. Exact. 9: 233-249.
Darlington, C. D., \& A. P. Wylie. 1955. Chromosome Atlas of Flowering Plants. Ed. 2. George Allen and Unwin, Ltd., London.
Fagerlind, F. 1947. Macrogametophyte formation in two agamospermous Erigeron species. Acta Horti Berg. 14: 221-246.
Feddema, C. 1971. Re-establishment of the genus Aldama (Com-positae-Heliantheae). Phytologia 21: 308-314.
Fedorov, A. A. [Ed.]. 1969. Khromosomnye Chisla Tsvetkovykh Rasteny (Chromosome Numbers of Flowering Plants). Acad. Sci. U.S.S.R., Leningrad.
Godfrey, R. K. 1952. Pluchea, section Stylimnus, in North America. Jour. Elisha Mitchell Sci. Soc. 68: 238-271.
Grashoff, J. L., M. W. Bierner, \& D. K. Northington. 1972. Chromosome numbers in North and Central American Compositae. Brittonia 24: 379-394.
Hammond, B. L., \& L. G. Polhamus. 1965. Research on Guayule (Parthenium argentatum): 1942-1959. Tech. Bull. U.S.D.A. Agric. Res. Serv. 1327. 157 pp.

Heiser, C. B., Jr. 1945. A revision of the genus Schkuhria. Ann. Missouri Bot. Gard. 32: 265-278.
Hoffmann, O. 1890-94. Compositae, pp. 87-391. In A. Engler \& K. Prantl, Die natürlichen Pflanzenfamilien, vol. 4(5). Leipzig.

Hsu, C.-C. 1967. Preliminary chromosome studies on the vascular plants of Taiwan (I). Taiwania 13: 117-129.
Jackson, R. C., \& R. R. Johnson. 1967. A new species of Machaeranthera section Psilactis. Rhodora 69: 476-480.
Kliphuis, E., \& J. H. Wieffering. 1972. Chromosome numbers of some angiosperms from the south of France. Acta Bot. Neerl. 21: 598-604.
Kovanda, M. 1972. Somatic chromosome numbers for some Asteraceae. Rhodora 74: 102-116.
Larsen, K. 1953. Chromosome numbers of some European flowering plants. A preliminary note. Bot. Tidsskr. 50: 91-92.
——. 1954. Chromosome numbers of some European flowering plants. Ibid. 50: 163-174.
Lewis, W. H. 1962. Aneusomity in aneuploid populations of Claytonia virginica. Am. Jour. Bot. 49: 918-928.

- 1970. Extreme instability of chromosome number in Claytonia virginica. Taxon 19: 180-182.
Longree, E. K. 1970. The systematics of the genera Sabazia, Selloa and Tricarpha (Compositae). Publ. Mus. Michigan State Univ., Biol. Ser. 4: 283-383.
McVaugh, R. 1972. Compositarum Mexicanarum pugillus. Contr. Univ. Michigan Herb. 9: 359-484.
——, \& C. Anderson. 1972. North American counterparts of Sigesbeckia orientalis (Compositae). Ibid. 9: 485-493.
Mehra, P. N., B. S. Gill, J. K. Mehta, \& S. S. Sidhu. 1965. Cytological investigations on the Indian Compositae. I. North-Indian taxa. Caryologia 18: 35-68.
Moore, A. H. 1907. Revision of the genus Spilanthes. Proc. Am. Acad. Arts 42: 521-569.
Moore, R. J. [Ed.]. 1970-72. Index to plant chromosome numbers for 1968-70. Regnum Veg. 68: 1-115; 77: 1-112; 84: 1-134.
Ornduff, R. [ed.]. 1967-69. Index to plant chromosome numbers for 1965-67. Regnum Veg. 50: 1-128; 55: 1-126; 59: 1-129.
- , T. Mosquin, D. W. Kyhos, \& P. H. Raven. 1967. Chromosome numbers in Compositae. VI. Senecioneae. II. Am. Jour. Bot. 54: 205-213.
-, P. H. Raven, D. W. Kyhos, \& A. R. Kruckeberg. 1963. Chromosome numbers in Compositae. III. Senecioneae. Ibid. 50: 131-139.

Powell, A. M. 1965. Taxonomy of Tridax (Compositae). Brittonia 17: 47-96.
-_ \& J. Cuatrecasas. 1970. Chromosome numbers in Compositae: Colombian and Venezuelan species. Ann. Missouri Bot. Gard. 57: 374-379.
—— \& S. Sikes. 1970. Chromosome numbers of some Chihuahuan desert Compositae. Southw. Naturalist 15: 175-186.
, \& B. L. Turner. 1963. Chromosome numbers in the Compositae. VII. Additional species from the southwestern United States and Mexico. Madroño 17: 128-140.
Robinson, B. L. 1894. Notes upon the genus Galinsoga. Proc. Am. Acad. Arts 29: 325-327.
1899. Revision of the genus Guardiola. Bull. Torrey Bot. Club 26: 232-235.
, \& J. M. Greenman. 1896. Revision of the Mexican and Central American species of the genus Calea. Proc. Am. Acad. Arts 32: 20-30.
Robinson, H., \& R. D. Brettell. 1972. Studies in the Heliantheae (Asteraceae). II. A survey of the Mexican and Central American species of Simsia. Phytologia 24: 361-377.
Rollins, R. C. 1950 . The guayule rubber plant and its relatives. Con'tr. Gray Herb. 172: 1-72.
Sharp, W. M. 1935. A critical study of certain epappose genera of the Heliantheae-Verbesininae of the natural family Compositae. Ann. Missouri Bot. Gard. 22: 51-152.
Solbrig, O. T. 1962. The South American species of Erigeron. Contr. Gray Herb. 191: 3-79.
L. C. Anderson, D. W. Kyhos, P. H. Raven, \& L. Rüdenterg. 1964. Chromosome numbers in Compositae V. Astereae II. Am. Jour. Bot. 51: 513-519.

- D. W. Kyhos, M. Powell, \& P. H. Raven. 1972. Chromosome numbers in Compositae VIII: Heliantheae. Ibid. 59: 869-878.
Strother, J. L. 1972. Chromosome studies in western North American Compositae. Am. Jour. Bot. 59: 242-247.
Stuessy, T. F. 1971a. Systematic relationships in the white-rayed species of Melampodium (Compositae). Brittonia 23: 177-190. 1971b. Chromosome numbers and phylogeny in Melampodium (Compositae). Am. Jour. Bot. 58: 732-736.

1972. Revision of the genus Melampodium (Compositae: Heliantheae). Rhodora 74: 1-70, 161-219.
1973. A systematic revision of the subtribe Melampodiinae (Compositae, Heliantheae). Contr. Gray Herb. 203: 6580.

Subramanyam, K., \& N. P. Kamble. 1967. In: IOPB chromosome number reports XII Taxon 16: 350.
Torres, A. M. 1968. Revision of Jaegeria (Compositae-Heliantheae). Brittonia 20: 52-73.
Turner, B. L. 1965. Taxonomy of Stenocarpha (Compositae-Heli-antheae-Galinsoginae). Southw. Naturalist 10: 238-240.
, W. L. Ellison, \& R. M. King. 1961. Chromosome numbers in the Compositae. IV. North American species, with phyletic interpretations. Am. Jour. Bot. 48: 216-223.
, \& D. Horne. 1964. Taxonomy of Machaeranthera sect. Psilactis (Compositae-Astereae). Brittonia 16: 316-331.
, \& R. M. King. 1964. Chromosome numbers in the Compositae. VIII. Mexican and Central American species. Southw. Naturalist 9: 27-39.
, M. Powell, \& R. M. King. 1962. Chromosome numbers in the Compositae. VI. Additional Mexican and Guatemalan species. Rhodora 64: 251-271.

```
DEPARTMENT OF BOTANY
THE OHIO STATE UNIVERSITY
COLUMBUS, OHIO 43210
```


[^0]:    ${ }^{1}$ Publication No. 843 from the Department of Botany, The Ohio State University, Columbus.

[^1]:    "The count published by Solbrig et al. was listed for $G$. atriplicifolic A. Gray, but in the most recent published revision of the genus (Robinson, 1899) this epithet is regarded as synonymous with $G$. mexicana.
    ${ }^{3}$ (e.g., Bidens L., Coreopsis L., Cosmos Cav., Glossocardia Cass., Thelesperma Less.)

[^2]:    INULEAE
    ***Epaltes mexicana Less.

[^3]:    Unless indicated otherwise, the reported meiotic chromosome numbers represent bivalents.
    ${ }^{\mathrm{b} K \mathrm{~K}}=$ Keil \& Canne; cKM $=$ Keil \& McGill; $\mathrm{d}=$ K $=$ Keil; eS $=$ Stuessy.
    ${ }^{\mathrm{b} K \mathrm{C}}=$ Keil \& Canne; cKM $=$ Keil \& McGill; ${ }^{\mathrm{l}} \mathrm{K}=$ Keil; eS $=$ Stuessy.
    $*$ First report for variety, **species, ***genus.
    *New reported number for taxon.
    $*$ First report for variety, **species, ***genus.
    *New reported number for taxon.
    

